A completeness relation for the coherent states of the (p, q)-oscillator by (p, q)-integration

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1994 J. Phys. A: Math. Gen. 27 L375
(http://iopscience.iop.org/0305-4470/27/11/005)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.70
The article was downloaded on 02/06/2010 at 03:48

Please note that terms and conditions apply.

LETTER TO THE EDITOR

A completeness relation for the coherent states of the (p, q)-oscillator by (p, q)-integration

Gong Ren-Shan
CCAST (World Laboratory), PO Box 8730, Beijing 100080, Peoples' Republic of China and (mailing address) Department of Physics, Nanchang University, Jiangxi 330047, People's Republic of China

Received 8 April 1994

Abstract

This is used to prove a completeness relation for the coherent states of the (p, q)-oscillator. The (p, q)-analogue of the Bargmann-Fock representation is also discussed.

In recent years, the quantum algebras with multiparameter deformations have aroused much interest [1-7] because they allow for more flexibility when dealing with applications to concrete physical models. In [4], the (p, q)-oscillator and their coherent states had been proposed for obtaining the realization of two-parameter quantum algebras. The major object of this letter is to derive a completeness relation for the (p, q)-oscillator coherent states. First, we have defined a (p, q)-integration and derived the (p, q)-analogue of Euler's formula for $\Gamma(x)$, on which the completeness relation of the (p, q)-oscillator coherent states is based. Second, we propose a proper integration measure and prove that there exists a resolution of unity for the (p, q)-oscillator coherent states. Finally, the (p, q)-analogue of the Bargmann-Fock representation is simply discussed.

Let us first review some useful results previously obtained for the (p, q)-oscillator. The latter is defined in terms of a (p, q)-creation operator A^{\dagger}, a (p, q)-annihilation operator $A=\left(A^{\dagger}\right)^{\dagger}$ and a Hermitian number operator N, satisfying the following relations [4]

$$
\begin{align*}
& {\left[N, A^{\dagger}\right]=A^{\dagger} \quad[N, A]=-A} \tag{1a}\\
& A A^{\dagger}-q A^{\dagger} A=p^{-N} \tag{1b}\\
& A A^{\dagger}-p^{-\mathbf{1}} A^{\dagger} A=q^{N} \tag{1c}
\end{align*}
$$

The formulas ($1 b$) and (1c) can also be written as

$$
\begin{equation*}
\left[A, A^{\dagger}\right]=[N+1]_{p, q}-[N]_{p, q} \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
[x]_{p, q}=\frac{q^{x}-p^{-x}}{q-p^{-1}} \tag{3}
\end{equation*}
$$

Note that there exists the $q \leftrightarrow p^{-1}$ symmetry in (1b), (1c) and (2), and in the limit $p=q$, (p, q)-oscillator reduces to q-oscillator [8-9]. Although the deformation parameters p and
q may be varied independently, we take, throughout, $0<q<1, p>0$ and such, that $[n]_{p, q}>0$ for any $n>0$, unless otherwise specified.

In the Fock space with $\{|n\rangle \mid(n=0,1,2, \ldots)\}$ as the complete orthonormal set of eigenstates of N, one has [4]

$$
\begin{align*}
& A|n\rangle=\sqrt{[n]_{p, q}}|n-1\rangle \tag{4a}\\
& |n\rangle=\left\{[n]_{p, q}!\right\}^{-1 / 2}(n\rangle=\sqrt{[n+1]_{p, q}}|n+1\rangle \quad N|n\rangle=n|n\rangle \tag{4b}\\
&
\end{align*}
$$

where $\langle n \mid m\rangle=\delta_{n, m}$. The resolution of unity may be written as

$$
\begin{equation*}
\sum_{n=0}^{\infty}|n\rangle\langle n|=I . \tag{5}
\end{equation*}
$$

The (p, q)-oscillator coherent states, defined by

$$
\begin{equation*}
\left.A \mid z)_{p, q}=z \mid z\right)_{p, q} \tag{6}
\end{equation*}
$$

can be written in terms of a (p, q)-exponential as follows

$$
\begin{equation*}
\mid z)_{p, q}=\exp _{p, q}\left(z A^{\dagger}\right)|0\rangle \equiv \sum_{n=0}^{\infty} \frac{\left(z A^{\dagger}\right)^{n}}{[n]_{p, q}!}|0\rangle=\sum_{n=0}^{\infty} \frac{z^{n}}{\sqrt{[n]_{p, q}!}}|n\rangle \tag{7}
\end{equation*}
$$

These coherent states are not to be orthonormal. In fact, we have

$$
\begin{equation*}
p, q\left(z^{\prime} \mid z\right)_{p, q}=\exp _{p, q}\left(\bar{z}^{\prime} z\right) \tag{8}
\end{equation*}
$$

According to [4], the (p, q)-derivative is defined to be

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d}_{p, q} x} \psi(x)=\frac{\psi(q x)-\psi\left(p^{-1} x\right)}{q x-p^{-1} x} \tag{9}
\end{equation*}
$$

so

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d}_{p, q} x}\left(\alpha x^{n}\right)=\alpha[n]_{p, q} x^{n-1} \tag{10a}\\
& \frac{\mathrm{~d}}{\mathrm{~d}_{p, q} x} \exp _{p, q}(\alpha x)=\alpha \exp _{p, q}(\alpha x) \tag{10b}
\end{align*}
$$

where α is a constant. We now introduce the (p, q)-integration for $f(x)$ on the interval $[0, a]$ as

$$
\int_{0}^{a} f(x) \mathrm{d}_{p, q} x= \begin{cases}\left(q-p^{-1}\right) a \sum_{n=0}^{\infty} q^{-(n+1)} p^{-n} f\left(q^{-(n+1)} p^{-n} a\right) & \text { for } q p>1 \tag{11}\\ \left(p^{-1}-q\right) a \sum_{n=0}^{\infty} p^{(n+1)} q^{n} f\left(p^{(n+1)} q^{n} a\right) & \text { for } q p<1\end{cases}
$$

and for the interval $[0, \infty)$

$$
\int_{0}^{\infty} f(x) \mathrm{d}_{p, q} x= \begin{cases}\left(q-p^{-1}\right) \sum_{n=-\infty}^{\infty} q^{-(n+1)} p^{-n} f\left(q^{-(n+1)} p^{-n}\right) & \text { for } q p>1 \tag{12}\\ \left(p^{-1}-q\right) \sum_{n=-\infty}^{\infty} p^{(n+1)} q^{n} f\left(p^{(n+1)} q^{n}\right) & \text { for } q p<1\end{cases}
$$

It is obvious that the (p, q)-integration is the inverse operation of the (p, q)-derivative, so we have

$$
\begin{align*}
& \int \alpha x^{n-1} \mathrm{~d}_{p, q} x=\frac{\alpha}{[n]_{p, q}} x^{n}+\text { const. } \tag{13a}\\
& \int \exp _{p, q}(\alpha x) \mathrm{d}_{p, q} x=\frac{1}{\alpha} \exp _{p, q}(\alpha x)+\text { const.. } \tag{13b}
\end{align*}
$$

From the definition of the (p, q)-derivative we can easily derive the (p, q)-integration by parts formula:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d}_{p, q} x}(f(x) g(x))=f(q x) \frac{\mathrm{d}}{\mathrm{~d}_{p, q} x} g(x)+\left(\frac{\mathrm{d}}{\mathrm{~d}_{p, q} x} f(x)\right) g\left(p^{-1} x\right) \tag{14a}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{a} f(q x) \frac{\mathrm{d}}{\mathrm{~d}_{p, q} x} g(x) \mathrm{d}_{p, q} x=\left.f(x) g(x)\right|_{0} ^{a}-\int_{0}^{a} g\left(p^{-1} x\right) \frac{\mathrm{d}}{\mathrm{~d}_{p, q} x} f(x) \mathrm{d}_{p, q} x \tag{14b}
\end{equation*}
$$

Note that this result is not unique since we also have

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d}_{p, q} x}(f(x) g(x))=f\left(p^{-1} x\right) \frac{\mathrm{d}}{\mathrm{~d}_{p, q} x} g(x)+g(q x) \frac{\mathrm{d}}{\mathrm{~d}_{p, q} x} f(x) \tag{15a}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\int_{0}^{a} f\left(p^{-1} x\right) \frac{\mathrm{d}}{\mathrm{~d}_{p, q} x} g(x) \mathrm{d}_{p, q} x=\left.f(x) g(x)\right|_{0} ^{a}-\int_{0}^{a} g(q x) \frac{\mathrm{d}}{\mathrm{~d}_{p, g} x} f(x) \mathrm{d}_{p, q} x \tag{15b}
\end{equation*}
$$

which can also be obtained by exchanging $q \leftrightarrow p^{-1}$ in (14b).
Now let us derive a (p, q)-integration formula, which is the (p, q) -analogue of Euler's formula for $\Gamma(x)$. We first define $-\xi(q, p)<0$ to be the largest zero of $\exp _{q, p}(x)$. Then we redefine $\exp _{q, p}(x)$ to be

$$
\begin{equation*}
\exp _{q, p}(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{[n]_{q, p}!} \tag{16}
\end{equation*}
$$

for $-\xi(q, p)<x$ and zero otherwise.
Using (p, q)-integration by parts ($14 b$), we obtain

$$
\begin{equation*}
\int_{0}^{\pi(q, p)} x^{n} \exp _{q, p}\left(-q p^{-1} x\right) \mathrm{d}_{q, p} x=\left(p q^{-1}\right) p^{-n}[n]_{q, p} \int x^{n-1} \exp _{q, p}\left(-q p^{-1} q^{-1} x\right) \mathrm{d}_{q, p} x \tag{17}
\end{equation*}
$$

where $\eta(q, p)=\xi(q, p) /\left(q p^{-1}\right)$ and then

$$
\begin{gather*}
\int_{0}^{\eta(q, p)} x^{n} \exp _{q, p}\left(-q p^{-1} x\right) \mathrm{d}_{q, p} x=\left(p q^{-1}\right)^{n}\left(p^{-n}[n]_{q, p} q^{0}\right)\left(p^{-(n-1)}[n-1]_{q, p} q^{1}\right) \\
\ldots\left(p^{-1}[1]_{q, p} q^{n-1}\right) \int_{0}^{\eta(q, p)} \exp _{q, p}\left(-q p^{-1} q^{-n} x\right) \mathrm{d}_{q, p} x . \tag{18}
\end{gather*}
$$

Since

$$
\begin{equation*}
\int_{0}^{\eta(q, p)} \exp _{q, p}\left(-q p^{-1} q^{-n} x\right) \mathrm{d}_{q, p} x=\left(p q^{-1}\right) q^{n} \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
[n]_{q, p}=\frac{p^{n}-q^{-n}}{p-q^{-1}}=\left(p q^{-1}\right)^{n-1}[n]_{p, q} \tag{20}
\end{equation*}
$$

we get

$$
\begin{equation*}
\int_{0}^{\eta(q, p)} x^{n} \exp _{q, p}\left(-q p^{-1} x\right) \mathrm{d}_{q, p} x=\left(p q^{-1}\right)[n]_{p, q}! \tag{21}
\end{equation*}
$$

This is the (p, q)-analogue of Euler's formula for $\Gamma(x)$.
We now derive a completeness relation for the coherent states of the (p, q)-oscillator by means of (21). Actually, the identity operator can be written as

$$
\begin{equation*}
\left.I=\int \mid z\right)_{p, q p, q}\left(z \mid \mathrm{d}_{p, q} \mu(z)\right. \tag{22}
\end{equation*}
$$

where the (p, q)-integration measure

$$
\begin{equation*}
\mathrm{d}_{p, q} \mu(z)=\frac{q p^{-1}}{2 \pi} \exp _{q, p}\left(-q p^{-1}|z|^{2}\right) \mathrm{d}_{q, p}|z|^{2} \mathrm{~d} \theta \tag{23}
\end{equation*}
$$

and the integration over θ (being the argument of z) is a normal one from 0 to 2π, whereas that over $|z|^{2}$ is a (p, q)-integration from 0 to $\eta(q, p)$. This result follows by

$$
\begin{align*}
\left.\int \mid z\right)_{p, q} p, q & \left(z \left\lvert\, \mathrm{d}_{p, q} \mu(z)=\frac{q p^{-1}}{2 \pi} \sum_{n=0}^{\infty} \sum_{m=0}^{\infty}\left\{\int \frac{|z|^{n}|\bar{z}|^{m}}{\sqrt{[n]_{p, q}![m]_{p, q}!}}\right.\right.\right. \\
& \left.\times \exp _{q, p}\left(-q p^{-1}|z|^{2}\right) \mathrm{d}_{q, p}|z|^{2} \int \mathrm{e}^{\mathrm{i}(n-m) \theta} \mathrm{d} \theta\right\}|n\rangle\langle m| \\
= & \sum_{n=0}^{\infty}\left\{\frac{q p^{-1}}{[n]_{p, q}!} \int|z|^{2 n} \exp _{q, p}\left(-q p^{-1}|z|^{2}\right) \mathrm{d}_{q, p}|z|^{2}\right\}|n\rangle\langle n| \\
= & \sum_{n=0}^{\infty}|n\rangle\langle n|=I . \tag{24}
\end{align*}
$$

It is worth noting that the completeness relation in (24) is in agreement with the result in [10] in the limit $p=q$. Furthermore, using the (p, q)-oscillator coherent states $\mid z)_{p, q}(|z|<\sqrt{\eta(q, p))}$ we can obtain the Bargmann-Fock representation, namely

$$
\begin{align*}
& |n\rangle \rightarrow X_{n}(z)=_{p, q}\left(\bar{z}|n\rangle=\frac{z^{n}}{\sqrt{[n]_{p, q}!}}\right. \tag{25a}\\
& |\psi\rangle=\sum_{n} c_{n}|n\rangle \rightarrow \psi(z)==_{p, q}\left(\bar{z}|\psi\rangle=\sum_{n} \frac{c_{n} z^{n}}{\sqrt{[n]_{p, q}!}}\right. \tag{25b}
\end{align*}
$$

In the Bargmann-Fock space which is the one of analytic functions of complex variable z, the following correspondences can be easily derived

$$
\begin{equation*}
A \rightarrow \frac{\mathrm{~d}}{\mathrm{~d}_{p, q} z} \quad A^{\dagger} \rightarrow z \quad N \rightarrow z \frac{\mathrm{~d}}{\mathrm{~d} z} \tag{26}
\end{equation*}
$$

Actually, we have

$$
\begin{align*}
& p_{p, q}(\bar{z}|A| \psi\rangle={\frac{\mathrm{d}}{\mathrm{~d}_{p, q} z}{ }_{p, q}\left(\bar{z}|\psi\rangle=\frac{\mathrm{d}}{\mathrm{~d}_{p, q} z} \psi(z)\right.}^{p, q\left(\bar{z}\left|A^{\dagger}\right| \psi\right\rangle=z_{p, q}(\bar{z}|\psi\rangle=z \psi(z)} \tag{27a}\\
& p_{p, q}(\bar{z}|N| \psi\rangle=z \frac{\mathrm{~d}}{\mathrm{~d} z}{ }_{p, q}\left(\bar{z}|\psi\rangle=z \frac{\mathrm{~d}}{\mathrm{~d} t} \psi(z) .\right. \tag{27b}
\end{align*}
$$

The inner product can be defined by means of (24) as follows

$$
\begin{align*}
\langle\varphi \mid \psi\rangle & \left.=\int\langle\varphi| \bar{z}\right)_{p, q} p, q \\
& =\int \bar{z}|\psi\rangle \mathrm{d}_{p, q} \mu(\bar{z}) \tag{28}\\
& \psi(z) \mathrm{d}_{p, q} \mu(z)
\end{align*}
$$

and with the inner product above we can easily prove

$$
\begin{equation*}
(z)^{\dagger}=\frac{\mathrm{d}}{\mathrm{~d}_{p, q} z} \quad\left(\frac{\mathrm{~d}}{\mathrm{~d}_{p, q} z}\right)^{\dagger}=z \quad\left(z \frac{\mathrm{~d}}{\mathrm{~d} z}\right)^{\dagger}=z \frac{\mathrm{~d}}{\mathrm{~d} t} \tag{29}
\end{equation*}
$$

It is shown that the Hermiticity properties $\left(A^{\dagger}\right)^{\dagger}=A, N^{\dagger}=N$ are entirely retained with respect to the inner product (28). As a final point, let us note that the representations (26), (28) and (29) are the same as in the case of the q-oscillator in the limit $p=q$ [11].

References

[1] Demidov E E, Manin Yu I, Mukhin E E and Zhdanovich D V 1990 Prog. Theor. Phys. Suppl. 102203
[2] Reshetikhin N Xiu 1990 Lett. Math. Phys. 20331
[3] Sudbery A 1990 J. Phys. A: Math. Gen. 23 L697
[4] Chakrabarti R and Jagannathan R 1991 J. Phys. A: Math Gen. 24 L711
[5] Fairlie D B and Zachos C K 1991 Phys. Lett. 256343
[6] Smirnov Yu F and Wehrhahn R F 1992 J. Phys. A: Math. Gen. 255563
[7] Quesne C 1993 Phys. Lett. 174A 19
[8] Macfarlane A J 1989 J. Phys. A: Math. Gen. 224581
[9] Biedenharn LC 1989 J. Phys. A: Math. Gen. 22 L873
[10] Gray R W and Nelson C A 1990 J. Phys. A: Math. Gen. 23 L945
[11] Quesne C 1991 Phys. Lett. 153A 303

