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(mailing address) Department of Physics, Nanchang University, Jiangxi 330047, People's 
Republic of China 

Received 8 April 1994 

Abstracf ( p .  q)-integration is defined for the (p, 9)-oscillator. This is used to prove a 
completeness relation for the coherent states of the ( p .  q)-xcillator. The (p. q)-analogue of 
the Bargmann-Fock representation is also discussed. 

In recent years, the quantum algebras with multiparameter deformations have aroused much 
interest 11-71 because they allow for more flexibility when dealing with applications to 
concrete physical models. In [4], the ( p ,  q)-oscillator and their coherent states had been 
proposed for obtaining the realization of two-parameter quantum algebras. The major 
object of this letter is to derive a completeness relation for the ( p ,  q)-oscillator coherent 
states. First, we have defined a (p, q)-integration and derived the ( p ,  q)-analogue of Euler's 
formula for I'(x), on which the completeness relation of the (p .  q)-oscillator coherent states 
is based. Second, we propose a proper integration measure and prove that there exists a 
resolution of unity for the ( p ,  q)-oscillator coherent states. Finally, the ( p .  q)-analogue of 
the Bargmann-Fock representation is simply discussed. 

Let us first review some useful results previously obtaitkd for the ( p .  q)-oscillator. The 
latter is defined in terms of a ( p ,  q)-creation operator At,  a (p, q)-annihilation operator 
A = (At)+ and a Hermitian number operator N, satisfying the following relations [4] 

[N, At] = At 

AAt - qAiA = p - N  

[N, A] = -A 

A A ~  - P - ~ A ~ A  = q N .  

The formulas (lb) and ( I C )  can also be written as 

where 

Note that there exists the q p-' symmehy in (lb), (IC) and (2). and in the limit p = q,  
( p .  q)-oscillator reduces to q-oscillator [8-91. Although the deformation parameters p and 
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q may be varied independently, we take, throughout, 0 < q < 1, p > 0 and such, that 
[n],,q > 0 for any n > 0, unless otherwise specified. 

In the Fock space with [ln)l(n = 0, l .Z .  . . . ) I  as the complete orthonormal set of 
eigenstates of N, one has [4] 

A b )  = a l .  - 1) = d-ln + 1) Nln) = 44 ('w 
n 

In) = N~lr.q~l-1'2(AtY10) [nip,,! = n [ k l p , q  (4b) 

where (nlm) = &.m. The resolution of unity may be written as 

k=1 

The ( p .  q)-oscillator coherent states, defined by 

A1z)p.q = Z1z)p.q 

can be written in term of a ( p .  q)-exponential as follows 

These coherent states are not to be orthonormal. In fact, we have 

p,q(z'Iz)p.q = exp,,,(i'z). (8) 

According to [4], the (p, q)-derivative is defined to be 

so 

where 01 is a constant. We now introduce the (p. q)-inteption for f(x) on the interval 
[O,al as 
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and for the interval [O, 00) 

It is obvious that the (p. q)-integration is the inverse operation of the (p. &derivative, so 
we have 

ff s ax"-' dp,9x = - x" + const 
b l P . 9  

( 1 3 ~  
1 

expp,,(orx)dp. x - - expp,q(orx) +const.. s - o r  

From the definition of the ( p .  q)-derivative we can easily derive the (p ,  q)-integration by 
parts formula: 

and 

Note that this result is not unique since we also have 

Therefore 

which can also be obtained by exchanging q ff p-' in (146). 
Now let us derive a (p, q)-integration formula, which is the (p. q)-analogue of Euler's 

formula for r(x). We first define -E(q, p) < 0 to be the largest zero of exp&). Then 
we redefine expq,Jx) to be 



Since 

we get 

This is the (p. 9)-analogue of Euler's formula for r(x). 

by means of (21). Actually, the identity operator can be written as 
We now derive a completeness relation for the coherent states of the (p. q)-oscillator 

I = 1z)p.q p .q (~ ldp .q~(~)  (22) s 
where the ( p ,  q)-integration measure 

(23) 

and the integration over 0 (being the argument of z) is a normal one from 0 to 2z, whereas 
that over Izlz is a ( p ,  q)-integrdon from 0 to ~ ( q .  p ) .  This result follows by 

4p-l dP.,fi(z) = ex~,,,(-q~-'Izl~)d,.~lzl~d~ 
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It is worth noting that the completeness relation in (24) is in agreement with the result 
in [IO1 in the limit p = 4. Furthermore. using the (p,q)-oscillator coherent states 
lz)p,9(Izl < m) we can obtain the Bargmann-Fock representation, namely 

In the Bargmann-Fock space which is the one of analytic functions of complex variable 2, 
the following correspondences can be easily derived 

d 
At 4 z N 42-. d A 4 -  

d P d  6 
Actually, we have 

d d 
dt p.q(ZlNI@) =z- (TI@) = z-@(z)- ,& P A  

(PIP) = / ( P I ? ) ~ , ~ ~ , ~ ( ~ I @ )  dp.9~(Z) 

= / dp,9~(z)  

The inner product can be defined by means of (24) as follows 

and with the inner product above we can easily prove 

d 
(Z)+ = - 

dP.9Z 

It is shown that the Hermiticity properties (At)t = A, N t  = N are entirely retained with 
respect to the inner product (28). As a final point, let us note that the representations (26), 
(28) and (29) +ue the same as in the case of the q-oscillator in the limit p = q [I I]. 
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