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Absfract. (p.g)-integration is defined for the (g, g)-oscillator. This is used to prove a
completeness relation for the coberent states of the (p, g)-oscillator. The (p, ¢)-analogne of
the Bargmann—Fock representation is also discnssed,

In recent years, the quantum algebras with multiparameter deformations have aroused much
interest [1-7] because they allow for more flexibility when dealing with applications to
concrete physical models. In [4], the (p, g)-oscillator and their coherent states had been
proposed for obtaining the realization of two-parameter quantum algebras. The major
object of this letter is to derive a completeness relation for the (p, g)-oscillator coherent
states. First, we have defined a (p, g)-integration and derived the (p, ¢)-analogue of Euler’s
formula for I' (x), on which the completeness relation of the (p, ¢)-oscillator coherent states
is based, Second, we propose a proper integration measure and prove that there exists a
resolution of unity for the (p, g)-oscillator coherent states. Finally, the (p, ¢)-analogue of
the Bargmann—Fock representation is simply discussed.

Let us first review some useful results previously obtained for the (p, g)-oscillator. The
latter is defined in terms of a (p, g)-creation operator A, a (p, g)-annihilation operator
A = (AD and a Hermitian number operator N, satisfying the following relations [4]

[N, All=4" [N, Al=-4 (la)
At —gATa=p¥ (15)
AAT —ptAtA=g". (1¢)

The formulas (1) and (1¢) can also be written as

[A, A= [N+1]4—~ [Nl @
where
q.r —_ p—x
= —. : - - 3
[x]p.q g~ p1 €))

Note that there exists the g <+ p~! symmetry in (15}, (1¢) and (2), and in the limit p = q,
(p, g)-oscillator reduces to g-oscillator [3-9]. Although the deformation parameters p and
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g may be varied independently, we take, throughout, 0 < ¢ < I, p > 0 and such, that
[nlp,; > O for any n > 0, unless otherwise specified.

In the Fock space with {jx)|(r = 0,1,2,...)} as the complete orthonormal set of
cigenstates of ¥, one has [4]

Aln)=Inlpgln =1 AT} =/In+1]p,ln+1) Nin) = n|n) (4a)

) = {nlp g }2ANI0)  [nlpg!=]]lklpe (4b)
k=1

where (n|m) = 8, ». The resolution of unity may be written as

PMDIVESS ' )

n=0

The (p, g)-oscillator coherent states, defined by

A ]z)p.q =z |Z)p.q (6)

can be written in terms of a (p, g)-exponential as follows

o0 tyr =) n
D)pq =exp, @D =3 2 p0 8Ty, o
n=0

= [2]p.q! e RV U3 PP
These coherent states are not to be orthonormal. In fact, we have
p.q(zrlz)p.q = expp'q(zrz)' (8)

According to [4], the (p, g)-derivative is defined to be

d _ Ylgx) =y (')
T @
50
ny __ n—1
s (ax") = efn]pqox (10a)
d
-c—l;—‘;; exp, ,(ax) = aexp, ,(ox) (10B)

where « is a constant. We now introduce the (p, g)-integration for f(x) on the interval
[0, a] as

oo
. @—pNa) g *pfigp ) forgp>1
j; F)dpgx = "= an
@™ -y p"g" f(p*Vg"a) forgp < 1

n=0
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and for the interval [0, co)

- |
@—p™" Y " FE ™y forgp > 1
n=—0Q

oo
f FO)dpgx = - (12)
0 @ —q) Y P F (g for gp < 1

n=—000

It is obvious that the (p, g)-integration is the i inverse operation of the (p, g)-derivative, so
we have

f ax™ 1 dy ox = ———x" + const. (13a)
[71p.q

1
f expp  (ax) dpgx = o Pra (oex) + const.. (136)

From the definition of the (p, g)-derivative we can ¢asily derive the (p, g)-integration by
parts formula:
d
dp.gx

a d
f f (qx) (x) dpgx = fx)g(x)I§ — f g(p~'x) " Fx)dpqx. (14b)

(f(x)g(x)) =

) glp~'x) (14a)

dﬂ‘?

Note that this result is not unique since we also have

S (F@)gl) = f (P"’x) g(X) + g(qx)-—f (x). (15a)

dP 4 d.P g

Therefore

f f(p"x)

which can also be obtained by exchanging g <> p~! in (14b).

Now let us derive a (p, g)-integration formula, which is the (p, g)-analogue of Euler’s
formula for I'(x). We first define —&(g, p) < O to be the largest zero of exp, ,(x}. Then
we redefine exp, P(x) to be }

g(X)dp g% = flx)g(x)p — f g(qx) f (x)dpqx (158)

(16}

€Xpy,p (%) = Z

for —£(g, p) < x and zero otherwise.
Using (p, ¢)-integration by parts (14b), we obtain

["]q p

7(q.p)
_[) x" exp, (—gp %) dg px = (pg )P nly, f " lexp, (~gp~'q 7 x)dy px
(17)
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where (g, p) = (g, P)/(gp~") and then

nlg.p}
fo X" exp,, (~ap™ %) dy px = (pg~ Y (P~ [l o8 (7~ Ml — 11, 54")

- el g2 -
N I § P )fo exp, ,(—qp~ ¢ x)dg px. (18
Since
ng.p} | .
j; exp, ,(—gp~ g "xX)dy px = (pg~)q" (19)
and
g = 29 = (pg™ 'Yl 20)
p—q!
we get
n(g.p} ) .
fo x"exp, p(—aqp” x)dgpx = (pg ™ )nlp,q!- (21

This is the (p, g)-analogue of Euler’s formula for I (x).
We now derive a completeness relation for the coherent states of the (p, g)-oscillator
by means of (21). Actually, the identity operator can be written as

I= f 1Dpa pa @ldpgisd) ©2)

where the (p, g)-integration measure

gp”!
o

dpate(@ = L _exp, (~ap~ 12 d;, Iz 0 (23)

and the integration over ¢ (being the argument of z) is a normal one from 0 1o 27, whereas
that over (z[* is a (p, g)-integration from O to 7(g, p). This result follows by

i Z: Z |z]"1Z]
f lz)‘p ek q(Z| Pa @ = 231 n=0 m=0 [ 4/ {"‘]p,q ![m]p.q!

 050g p(~ap™ 1) dy Iz [ &2 d9}|n><m|

o0

= Z{[n] f |2I*" equp(—QP_IIle)dqplzlz}ln}(nl
Pl

00
=Y Innl=1. (24)

n=0
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It is worth noting that the completeness relation in (24) is in agreement with the result
in [10} in the limit p = ¢. Furthermore, vsing the (p,g)-oscillator coherent states
12)p.g (2l < +/n{g, p)) we can obtain the Bargmann—Fock representation, namely

zn

In) = Xa(2) =pq (Eln) = T (252)
Pt
W)=Y caln) ~ ¥(2) =p,4 ElY) = Z \/E—;‘ , (@5h)
' " P -

In the Bargmann-Fock space which is the one of analytic functions of complex variable z,
the following correspondences can be easily derived

d d
— 1 —_
A — Al — 7 N—>zdz. (26)
Actually, we have

d

re(@AlY) = p.q(zhl’) = d——xlf(z) (27a)
PJI p.gZ -

paEIATIY) = 2, ElY) = 29 (2) e

d
rgEINY) = Zdz P

The inner product can be defined by means of {24} as follows

a(Zl¥) = z"—iﬁ(z) (27¢)

olp) = f (01)p.0 p.a Gl dpgit @)

- f PRV o ul2) 28)

and with the inner product above we can easily prove

d a d\f 4
T = = —_— == T —
(2) 3.z ( 3 qz) z (z ) z TS 29

It is shown that the Hermiticity properties (A")f = 4, N = N are entirely retained with
respect to the inner product (28). As a final point, let us note that the representations (26),
(28) and (29) are the same as in the case of the g-oscillator in the limit p = g [11].
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